Review on: Response of bread wheat (*Triticum aestivum* L.) to seeding rate on yield and yield components

Birhanu Gebeyehu

Abstract
Bread wheat (*Triticum aestivum* L.) is an economically important crop. However, its annual productivity is very low due to poor management practices like: inappropriate seeding rate and utilization of different fertilizer types. Therefore, paper to review the response of bread wheat (*Triticum aestivum* L.) to seeding rate on yield. Based on this review, application of different seeding rates has significant effects on yield and yield components of bread wheat. The results of this review showed that high-yield is obtained when wheat is sown from the seeding rate when increased from 75 to 200 kg ha⁻¹. As the seeding rate increased from 75 to 200 kg ha⁻¹, number of productive tillers, total numbers of tillers, total biomass yield and straw yield were increased. From this review, it is possible to conclude that increased seeding rate performed better and gave higher grain yield and highest grain yield advantage over the lower seeding rates.

Keywords: bread wheat, seeding rate, yield, yield components

1. Introduction
Bread wheat (*Triticum aestivum* L.) is an annual crop plant belonging to the family Poaceae, sub-family Pooideae and tribe Triticeae (Feldman and Levy, 2015) [18] and native to the Mediterranean region and southwest Asia (Gibson and Benson, 2002) [21]. It is one of the several species of cultivated wheat, now grown in temperate climates worldwide. Currently, it is also becoming one of the most important cereals grown on a large scale in the tropical and sub-tropical regions of the world (Onwueme and Sinha, 1999; Gibson and Benson, 2002) [47, 21].

Bread wheat (*Triticum aestivum* L.) is the second most important staple crop in the world (FAOSTAT, 2014) [17]. Importance of wheat crop in the world trade is greater than that of all other crops produced and most widely grown food crop in the world (FAO, 2015) [15]. Wheat is grown across a wide range of environments around the world with the broadest adaptation of all the cereal crop species. It is a cool season crop requiring a minimum temperature for growth of 3 °C to 4 °C, with optimal growth occurring around 25 °C and tolerance of temperatures to a maximum of about 32 °C (Leonard and Martin, 1963). Wheat flourishes in many different agro-climatic zones with production concentrated between latitudes 30 °N and 60 °N and longitudes 27 °S and 40 °E, but there are also wheat production areas beyond these limits from the Arctic Circle to higher elevations near the equator (Briggle and Curtis 1987). Although about three-fourths of the land area where wheat is grown receives an average of between 375 and 875 mm of annual precipitation, it can be grown in most locations where precipitation ranges from 250 to 1750 mm (Leonard and Martin, 1963). Wheat grows best on well-drained soils anywhere from sea level up to heights of about 4500 m above sea level.

According to FAO (2017) [16], about 759 million metric ton of wheat was produced in the year 2016 with an average productivity of 3.19 tons ha⁻¹. Seeding rate has a significant influence on the majority of agronomic traits of bread wheat (FAO, 2014) [14]. Bread wheat sowing at the optimum seeding rate with appropriate fertilizer types would significantly enhance the number of grains per spike, the spike length, grain weight per spike and thousand grains weight and then finally produce high grain yield (Iqbal *et al.*, 2010) [1]. But, seeding rate above or below the optimum may reduce the yield significantly (Ozturk *et al.*, 2006) [50]. Then objective of this paper is to review the response of yield of bread wheat to different seeding rates.
2. Literature review

2.1 Brief Introduction to Bread Wheat

Bread wheat (Triticum aestivum L.) is an annual crop plant belonging to the family Poaceae, sub-family Pooideae and tribe Triticeae (Feldman and Levy, 2015) [18] and native to the Mediterranean region and southwest Asia (Gibson and Benson, 2002) [21]. Wheat is classified in the grass tribe (Triticeae) and the genus Triticum (Poehlman and Sleper, 1995) [51]. All wheat species, whether wild or cultivated, belong to the genus Triticum and the family Poaceae. The genus Triticum contains about 30 types of wheat that have enough genetic differences to be considered separate species or sub-species (Bretth, 1975) [6].

Most archeological evidence suggests that the earliest domestication of wheat occurred around 7500–6500 BC in the fertile crescent consisting of the mountain chains flanking the plains of Mesopotamia and the Syrian Desert (Mason and Spaner, 2006) [41]. Cultivation of bread wheat appears to have spread around the Near East by 7000 BC, and subsequently to the lowlands of Mesopotamia, Egypt, Mediterranean basin, Europe, central Asia, India, and Ethiopia by 4000 BC (Zeven, 1980) [60]. Therefore, today wheat is grown all over the world, with different varieties sown according to the various climates. In 2002, the world’s main wheat producing regions were China, India, United States, Russian Federation, France, Australia, Germany, Ukraine, Canada, Turkey, Pakistan, Argentina, Kazakhstan and United Kingdom (Bruinsma, 2017).

2.2 Factors Affecting Seeding Rate of Bread Wheat

Ashenafi Mengistu (2000) [4] reported that, seeding rate depends on the tillering capacity of the crop varieties, sowing date, soil conditions, and cultivation intensity. For high yielding, short stature cultivars, a seed rate of 100-125 kg ha⁻¹ have been found desirable. In places where due to climate, early growth is restricted or the growing season is short, a higher seed rate more than 125 kg ha⁻¹ is recommended. For good crop of wheat, yielding 5000 kg ha⁻¹, there should be about 500 spikes per square meter. Such a stand can be achieved at a seed rate of 100kg ha⁻¹ with row spacing of 22.5 cm for all those cultivars which tiller readily and at a seeding rate of 125 kg ha⁻¹ with rows spaced at 20 cm for the cultivars which are low in tillering (Onwueme and Sinha, 1999) [47].

Lockhart and Wiseman (1983) [38] reported that, seeding rate generally, increases for varieties with larger seed size and low tillering capacity. Moreover, late sowing, broadcasting seeds, heavy clay soils and low soil moisture requires higher seeding rate. Similarly, Khah et al. (1989) [13] found that low-vigor spring wheat seed produced lower yields only when it resulted in low plant populations or when planting was later than normal. Reddy (2006) reported that early maturing and poor tillering varieties need closer spacing with higher seeding rate compared with long duration and profusely tillering varieties. Similarly, late-sown crops demand closer row spacing and higher seed rate to compensate for the lesser number of tillers and shorter growing periods. Furthermore, Marshal and Ohms (1987) found that grain yield of wheat can be increased significantly by high seeding rates. It was recognized, however, varieties with poor tillering ability required seed rates as high as 160 kg even when drilled (Tanner et al., 1991) [60]. Regarding the effect of seedbed condition on the seeding rate of the wheat crop, Gooding et al. (1997) [22] reported that, high seeding rates are required for poor seedbed, and for a grain with reduced germination capacity and vice versa.

Darwinkel et al. (1977) [10] concluded that high seeding rates are advantageous only when conditions such as delayed planting and low temperature inhibited tillering. Seeding rate had significant effect on the number of tillers at heading time. The highest average number tillers per plant (6.0) were obtained at the seeding rate of 100 kg ha⁻¹ while the lowest number of tillers per plant of 2.2 was obtained at 150 kg ha⁻¹ seeding rate. Using seeding rate of 100, 125 or 150 kg ha⁻¹, the number of tillers increased consistently with increasing seeding rates. On the other hand, seeding rate of 125 kg ha⁻¹ gave the highest number of tillers (Worku Awdie, 2008) [66]. Darwinkel (1980) [13] explained that reducing seeding rate may result in more tillers and spikes per plant, and more spikelets but in many cases reduced grain yield per hectare. Moreover, Osman and Mohamed (1981) [48] reported that, positive responses to increasing seeding rates are associated with the increases in the number of tillers.

2.3 Effects of Seeding Rates on Yield of Bread Wheat

Plant density is important to determine plant height. Thickening plant density caused by changing plant height and stem thickness because of inter-specific competition to more absorption light (Naseri et al., 2012) [45]. The variations in plant height in response to seeding rate, wheat sown at higher seed rate produced greater plant height and lower seeding rate results in lower plant height. Wheat sown at higher seeding rates had significantly higher internode length and increased plant height. Low seeding rate less competition for space, nutrients, and water and thus short erect plants and minimum or no lodging was noted (Laghari et al., 2011) [17]. The height of plants grown at the lowest seeding rate (100 kg ha⁻¹) was significantly lower than the heights of plants grown at seeding rates ranging from 125-175 kg ha⁻¹ (Haile Deressa et al., 2013) [25].

At higher seeding rates, competition among the plants started before the maximum tillering stage, which was manifested in a low increase in spike production (Sarker et al., 2007) [55]. Similarly, Suleiman et al. (2010) [59] also noted that spike length is affected by seeding rates. The shortest and highest spikes length was recorded by using the highest and lowest seeding rate respectively. Such decrease in spike length might be due to the competition between greater numbers of plants for the environmental conditions. This could have been reflecting in lower rates of photosynthesis and growth of those plants, which was expressed in a noticeable decrease in spike length (Nizamani et al., 2014) [40].

Grain yield of bread wheat is a product of three yield components: the number of ears per unit area, the number of kernels per ear and individual kernel weight. Ear number is the first yield component to be fixed, and, thus, assumes particular importance. Intensive productive tillering and a higher number of kernels per ear compensate for grain yield at low seeding rates (Und, 2002) [63]. Gafaar (2007) [20] studied the growth, yield and its components of bread wheat as affected by the sowing densities, and found that increasing sowing density from 200 up to 400 plants per m² significantly increased. Suleiman et al. (2010) [59] also noted that grain yield ha⁻¹ bread wheat was gradually and significantly increased as sowing density increased. The
The grain yield of wheat has been shown to increase with higher seeding rates. Kumar et al. (2004) [36] and Otteson et al. (2007) [39] reported that increasing sowing rates with optimum fertilizer application resulted in increased grain yield. Changes in seeding density have special importance in wheat crops since they have a direct effect on grain yield (Ozturk et al., 2006) [50]. Seeding rate is an important agronomic practice to influence the productivity of bread wheat grain yield. As Tompkins et al. (1991) [66] concluded, the highest bread wheat grain yield was obtained by using the lowest seeding rate of 125 kg ha⁻¹ among higher seeding rates tested ranging from 150-300 kg ha⁻¹ since wider row spacing results better water and nutrient utilization thereby produces more number of effective tillers per unit area. On the other hand, (Sulieman, 2010) stated that seeding rate of bread wheat at 150 kg ha⁻¹ gave significantly higher grain yield than 100 kg ha⁻¹ seeding rate. As Nizamani et al. (2014) [60] reported that the result regarding agronomic traits revealed that seeding rate has significant influence on majority of agronomic traits of bread wheat and he concluded that wheat sown under seeding rate of 125 kg ha⁻¹ had better growth, yield parameters and then higher grain yield. Cheema et al. (2006) [9] reported that the highest wheat grain yield (4293 kg ha⁻¹) with seeding rate of 125 kg ha⁻¹. These results also agree with those reported by Nizamani et al., (2014) [46] who reported that lower seeding rates had better yield due to vigorous crop growth. The significance of the effects of seeding rates on the growth and grain yield of wheat has also been proved by Sikander et al. (2003) [56] and the yield and yield components in bread wheat were affected significantly by seeding rate. A simple economic analysis calculating the increased cost of seed compared with the increased income suggests that it is economic to plant at the higher seeding rate (Jones et al., 2008) [32], Tomar and Kumar (2004) [61] compared seeding rates of 100, 125, 150 kg ha⁻¹ and found that yield was maximum at the highest seeding rate of 150 kg ha⁻¹. Menman and Zandstra (2005) [42] reported that wheat grain yield increased with increasing seeding rate and decreased with decreasing seeding rate from 250 to 200 or 150 kg ha⁻¹. Most farmers in Ethiopia are using higher seeding rate than the recommended ones as a means for suppressing weeds (Regassa Ensermu et al., 1992) [53]. Higher seeding rate up to (175 kg ha⁻¹) increased grain yield for broadcast sowing by compensating for seed buried deeper or left uncovered on the surface. Increasing of spike per unit area and reduction of a number of kernels per spike due to increasing of seeding rate was also reported (Varga et al., 2000; Zaheer et al., 2000; Hanson, 2001) [64, 67, 26]. More kernels per spike, low kernel weight due to lack of photosynthetic matter to fill kernel because of competition for light. Thus, there is a negative relationship between plant density and thousand grain weight. Donaldson et al. (2001) [12] showed that highest and lowest kernels per spike observed at lowest and highest plant densities respectively. At higher plant density most kernels would fade at an early stage because of competition between growing kernels to absorb preserved matters and as the result, low kernels would produce (Rahim et al., 2012) [59]. A number of kernels per spike are affected by cultivars (Majid and Mohsen, 2012) [59]. The relative advantage in grain yield of variety might be largely attributed to its higher number of kernels per spike and per m² (Solomon Gelalchta et al., 2000) [58]. The minimum kernels per spike in farmer’s seed category may be due to the aging of the seed, which resulted in poor quality seedling and poor management practices and the environment during its development (Sinclair and Jamieson, 2008) [57]. Changes in seeding rates have special importance in wheat crops since they have a direct effect on grain yield and its components (Veselinka et al., 2014) [65]. The higher seeding rate in bread wheat resulted in decreased 1000 kernel weight (Baloch et al., 2010; Laghari et al., 2011) [5, 37]. Several authors emphasized the influence of higher seeding rate on 1000 kernel weight (Hilbrunner et al., 2005; Dubis and Budzynski, 2006) [27, 13]. They established that with a seeding rate of 600 in comparison to 480 seeds m⁻² decreased thousand kernel weight. However, small and dense kernels are better than large and light kernels. Even with the lower number of spikes per unit area, produced higher grain yield due to its bolder grain size (WRC, 2006). A number of kernels per spike and kernel weight were in positive correlation with other and directly influenced wheat yield (Fellahi et al., 2013) [19]. In higher seed rates, a higher number of plants and tillers failed to produce higher biomass yield (Allam, 2003) [3]. However, according to Haile Deressa and Girma Fana (2010) [25] the highest biomass yield was obtained in the highest seeding rate (225 kg ha⁻¹). Richards et al. (2002) [54] demonstrated that harvest index as indicators of the genetic potential of the plant to produce economic yield, high harvest index under control treatment can be accompanied with high grain yield under water stress. Wheat cultivars that have high harvest index, most likely have high grain yield under field conditions. A positive relationship found between grain weight and harvest index. It means that increased of grain weight results increased harvest index (Koocheki et al., 2006) [153]. In another study, Varga et al. (2000) [64] observed reduction of seed weight due to an increase of seeding rate, while Zaheer et al. (2000) [107] reported reduction of harvest index as the increase of seeding rate. Ali et al. (2010) [1] compared seeding rates of 125, 150, 175, 200 kg ha⁻¹ harvest index was highest under seeding rate of 150 kg ha⁻¹. The highest mean height of 95 cm was recorded in barley plots received 150 kg ha⁻¹ (Arif et al., 2006) [3]. In contrast, control plots exhibited significantly lower plant height compared to all other treatments. The result agrees with Mitiku Woldesenbet et al. (2014) [43] who showed a significant effect on plant height where the tallest barley plants were obtained with application of the highest seeding rate. The highest number of effective tillers and total tillers was obtained from the highest seeding rate. In agreement with this result Arif et al. (2006) [3] reported significant increase in number of grains per spike of wheat by applying by highest seeding rate. The highest total biomass yield (11500 kg ha⁻¹) and straw yield (6114 kg ha⁻¹) were obtained from the highest seeding rate of (150 kg ha⁻¹) as compared to straw yield (2115 kg ha⁻¹) which is obtained from the lowest seeding rate. Harvest index was influenced significantly with application of the highest seeding rate (Hussain et al., 2003) [28]. The highest harvest index (47) was obtained with the highest seeding rate of (150 kg ha⁻¹) as compared to plots that received applied the lowest seeding rate. Mooleki et al. (2002) [44] reported that the increased rate of seed has increased the harvest index.
Plant density is important to determine plant height. Thickening plant density caused by changing plant height and stem thickness because of inter-specific competition to more absorption light (Naseri et al., 2012) [85]. The variations in plant height in response to seeding rate, wheat sown at higher seed rate produced greater plant height and lower seeding rate results in lower plant height. Wheat sown at higher seeding rates had significantly higher internode length and increased plant height. Low seeding rate less competition for space, nutrients, and water and thus short erect plants and minimum or no lodging was noted (Laghari et al., 2011) [39]. The height of plants grown at the lowest seeding rate (100 kg ha\(^{-1}\)) was significantly lower than the heights of plants grown at seeding rates ranging from 125-175 kg ha\(^{-1}\) (Haile Deressa et al., 2013) [85].

At higher seeding rates, competition among the plants started before the maximum tillering stage, which was manifested in a low increase in spike production (Sarker et al., 2007) [85]. Similarly, Suleiman et al. (2010) [59] also noted that spike length is affected by seeding rates. The shortest and highest spikes length was recorded by using the highest and lowest seeding rate respectively. Such decrease in spike length might be due to the competition between greater numbers of plants for the environmental conditions. This could have been reflecting in lower rates of photosynthesis and growth of those plants, which was expressed in a noticeable decrease in spike length (Nizamani et al., 2014) [46].

3. Conclusion

Based on this review, application of different seeding rates has significant effects on yield and yield components of bread wheat. The results of this review showed that high-yield is obtained when wheat is sown from the seeding rate when increased from 75 to 200 kg ha\(^{-1}\). As the seeding rate increased from 75 to 200 kg ha\(^{-1}\) number of productive tillers, total numbers of tillers, total biomass yield and straw yield were increased. From this review, it is possible to conclude that increased seeding rate performed better and gave higher grain yield and highest grain yield advantage over the lower seeding rates.

4. References

g
15. FAO (Food and Agricultural Organization). Biannual report on global food production and market, USA, 2015, 7.
19. Fellahi Z, Hannachi A, Bouzerrour H, Boutekrabt A. Correlation between traits and path analysis coefficient for grain yield and other quantitative traits in bread wheat under semi-arid conditions. Journal of Agriculture and Sustainability 2013, 3(1).
22. Gooding MJ, Smith G, Davies WP, Kettlewell PS. The use of residual maximum likelihood to model grain quality characters of wheat with variety, climatic and
68. Zeven AC. The spread of bread wheat over the old world since the Neolithicum as indicated by its genotype for hybrid necrosis. Journal of agriculture traditionally botanique appliquée 1980;27(1):19-53.